
DLBooster: Boosting End-to-End Deep LearningWorkflows with
Offloading Data Preprocessing Pipelines

Yang Cheng
cheng-y16@mails.tsinghua.edu.cn

Tsinghua University
Microsoft Research

Dan Li
tolidan@tsinghua.edu.cn
Tsinghua University

Zhiyuan Guo
v-zhguo@microsoft.com

Microsoft Research
Beihang University

Binyao Jiang
v-bijian@microsoft.com

Microsoft Research
Shanghai Jiao Tong University

Jiaxin Lin
v-jiaxl@microsoft.com
Microsoft Research
Beihang University

Xi Fan
v-xif@microsoft.com
Microsoft Research

Shanghai Jiao Tong University

Jinkun Geng
steam1994@163.com
Tsinghua University

Xinyi Yu
v-xinyyu@microsoft.com

Microsoft Research
Shanghai Jiao Tong University

Wei Bai
webai@microsoft.com
Microsoft Research

Lei Qu
Lei.Qu@microsoft.com
Microsoft Research

Ran Shu
Ran.Shu@microsoft.com

Microsoft Research

Peng Cheng
pengc@microsoft.com
Microsoft Research

Yongqiang Xiong
yongqiang.xiong@microsoft.com

Microsoft Research

Jianping Wu
jianping@cernet.edu.cn
Tsinghua University

ABSTRACT
In recent years, deep learning (DL) has prospered again due to
improvements in both computing and learning theory. Emerging
studies mostly focus on the acceleration of refining DL models
but ignore data preprocessing issues. However, data preprocess-
ing can significantly affect the overall performance of end-to-end
DL workflows. Our studies on several image DL workloads show
that existing preprocessing backends are quite inefficient: they ei-
ther perform poorly in throughput (30% degradation) or burn too
many (>10) CPU cores. Based on these observations, we propose
DLBooster, a high-performance data preprocessing pipeline that
selectively offloads key workloads to FPGAs, to fit the stringent
demands on data preprocessing for cutting-edge DL applications.
Our testbed experiments show that, compared with the existing
baselines, DLBooster can achieve 1.35×∼2.4× image processing
throughput in several DL workloads, but consumes only 1/10 CPU
cores. Besides, it also reduces the latency by 1/3 in online image
inference.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00
https://doi.org/10.1145/3337821.3337892

CCS CONCEPTS
•Computer systems organization→Data flow architectures.

KEYWORDS
Deep learning, data preprocessing, cloud computing, FPGAs

ACM Reference Format:
Yang Cheng, Dan Li, Zhiyuan Guo, Binyao Jiang, Jiaxin Lin, Xi Fan, Jinkun
Geng, Xinyi Yu, Wei Bai, Lei Qu, Ran Shu, Peng Cheng, Yongqiang Xiong,
and Jianping Wu. 2019. DLBooster: Boosting End-to-End Deep Learning
Workflows with Offloading Data Preprocessing Pipelines. In 48th Interna-
tional Conference on Parallel Processing (ICPP 2019), August 5–8, 2019, Kyoto,
Japan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3337821.
3337892

1 INTRODUCTION
Today, DL is prevalent due to its recent substantial progress in many
areas, such as image classification [26, 35, 36], speech recognition
[18], recommender system [45], and so on. As one of the largest
cloud service providers in the world, we have witnessed various
kinds of DL tasks submitted by our customers during the past few
years. Given the prevalence of DL, much effort has been made
to accelerate DL workloads, especially in the cloud. For example,
advanced DL frameworks such as TenforFlow [1], PyTorch [34], and
MXNet [6] have been proposed and widely supported by today’s
public cloud providers as a service. Meanwhile, computation and
communication hardware have also been developed to provide
infrastructural support for DL acceleration. For example, NVIDIA
Tesla V100 and Google TPU-v3 become available in the cloud, which

https://doi.org/10.1145/3337821.3337892
https://doi.org/10.1145/3337821.3337892
https://doi.org/10.1145/3337821.3337892

ICPP 2019, August 5–8, 2019, Kyoto, Japan Yang Cheng, et al.

can greatly improve the computation speed for heavy DL workload.
RDMA and FPGA NICs are also emerging to offload the packet
processing logic to hardware and achieve higher throughput, as
well as ultra-low latency [22, 23, 25, 28, 40, 48].

Despite the aforementioned efforts [3, 7, 8, 23, 24, 32, 33, 47], we
notice that most of them focus on the DL acceleration through the
training/inference process, but ignore the overheads of data prepro-
cessing. Actually, data preprocessing serves as a pre-conditional
step for training/inference and can seriously affect the overall per-
formance for DL training/inference. Moreover, with more power-
ful computing hardware and higher network capacity, the train-
ing/inference bottlenecks are mitigated to a great extent [22, 23, 46],
leaving data preprocessing as an increasingly distinct bottleneck in
today’s DL workflows. For example, while training AlexNet [35] on
a GPU cluster, we have the following observations: (1) Caffe [31]
using the LMDB [50] backend decreases the training throughput
by ∼30%, compared with training with synthetic data; and (2) Caffe,
which parses data using the CPU at runtime, achieves only ∼25%
training performance in the default configuration or makes up the
performance gaps by burning more than 12 CPU cores per GPU.

Burning CPU cores seems to be a straightforward choice to
improve the preprocessing speed and match the GPU power. How-
ever, this approach is inefficient and even infeasible due to general
concerns such as performance degradation and poor scalability.
Particularly, when deploying DL in the cloud, burning CPU cores
will bring the expensive cost to both users (CPUs are charged in
the cloud) and cloud providers (high power consumption increases
their maintenance costs). In addition to burning CPU cores, there
are many other data preprocessing backends widely used today.
However, from our studies, they also suffer from several limitations
such as downgraded performance, expensive cost (economics and
time), scalability, and lack of generality, which we discuss in detail
in Section 2.2. Unfortunately, these limitations widely exist in to-
day’s DL frameworks but are not well addressed, which make them
the bottlenecks in modern DL deployments, especially in the cloud.

Considering the deficiencies with existing works on data prepro-
cessing, we propose DLBooster to make DL great again. DLBooster
is an online data preprocessing backend to speed up end-to-end DL
workflows, which delivers an online decoding service by offloading
the data preprocessing workloads to FPGAs, and can simultane-
ously feed the processed data into several GPU engines. However,
DLBooster still faces the following challenges:

(1) Co-design with hardware and software: Different from
software systems, DLBooster is a system which needs to consider
the co-existence of software and hardware. We need to communi-
cate with the decoder in FPGA from user space and drive it to work
correctly. Moreover, data access in OS and FPGA differs greatly,
which requires us to design a high-performance I/O interface for
the decoder in FPGA. We discuss them in depth in Section 3.4.1 and
Section 3.4.2.

(2)Balance betweenworkload and resource constraint: It is
very inefficient to naively offload all data preprocessing workloads
to the FPGA device, mainly due to the constraints of FPGAhardware
resources, and we discuss our considerations about what workloads
should be offloaded to FPGAs and how to pipeline them efficiently
in Section 3.3.

(3)Compatibility to different DL engines and applications:
DLBooster should not only achieve high performance, but should
also be open to different DL engines and different DL applications.
We discuss the design of the DLBooster interface in Section 4.1.

Having addressed the above challenges carefully, we build a
DLBooster prototype and integrate it with two popular DL frame-
works, namely, NVCaffe [13] and TensorRT [15]; then, we evaluate
the performance of DLBooster on two representative end-to-end
image DL workflows, namely, offline training and online inference.
Our results show that DLBooster improves the image processing
throughput by up to 1.35×∼2.4× and reduces the image processing
time by 1/3. This throughput in certain cases comes close to the
performance bound of GPU.

One may concern about the programming with FPGAs and the
cost of FPGA devices when using DLBooster. However, we show
the investment in DLBooster is worthwhile (in Section 5.4), and
we are trying to minimize users’ effort on using DLBooster by our
careful designs and continual optimization. In summary, this paper
makes the following contributions.
• We first address the importance of data preprocessing for
today’s DL systems and conduct comprehensive studies on
its limitations.
• We design an online data preprocessing backend by selec-
tively offloading decoding workloads to FPGAs to speed up
DL workflows.
• With careful design, we build a DLBooster prototype and
prove its efficiency in several end-to-end DL workflows of
image applications.
• We expose friendly APIs and pluggable FPGA decoders, so
that common users can easily migrate DLBooster to different
DL engines for the performance boost.

The rest of this paper is organized as follows: Section 2 illustrates
the full stack of the DL workflow in detail and analyzes the limi-
tations of existing data preprocessing backends, which motivates
us to design DLBooster in Section 3. Section 4 presents the imple-
mentation of DLBooster, and Section 5 demonstrates the potential
of DLBooster based on several image DL workflows. We show the
related work in Section 6 and conclude this work in Section 7.

2 BACKGROUND AND MOTIVATION
2.1 DL Workflow
DL [39] is a class of machine learning algorithms, which repre-
sents complex tasks with a large number of connected neurons. DL
greatly simplifies the complexity of models while maintaining high
accuracy and has been widely used to solve many cutting-edge
tasks today. Particularly, an end-to-end DL workflow (shown in
Figure 1) consists of several phases, which are listed as follows.

Data collection is the first step of an end-to-end DL workflow
and is used to prepare data for learning. Usually, DL users prepare
data from historical samples generated by themselves or public
datasets, such as ImageNet[41], MJSynth[29], AudioSet[21], etc.
Data collection can greatly affect the accuracy of DL applications.

Data preprocessing transforms data in various formats to the
unified input for DL models and varies greatly for different DL
applications. In general, data preprocessing consists of two steps,
namely, data standardization which extracts features and reshapes

DLBooster: Boosting End-to-End Deep Learning Workflows with
Offloading Data Preprocessing Pipelines ICPP 2019, August 5–8, 2019, Kyoto, Japan

..
...
...
.

Cloud Inference Server

TensorRT TensorFlow MXNet

Label=A
Labels

1: generate
samples

2: send to server

3: pre-
process

4: infer
6: return prediction 5: predict

Original picture in
JPEG. Shape: 20 * 12

Resized picture in
BMP. Shape: 5 * 5

Cropping
Decoding and

resizing

Cropped pixel
matrix, Shape: 3 * 3

Figure 1: The full stack of a DL workflow. Taking the cloud-
based online inference as an example, the client on device
first generates data and sends the data to the server on cloud,
and the inference engine on the server then makes predic-
tion based on the data and returns the labels to the client.

them to match the input of a DL model, and data augmentation
which adopts augmentation technologies such as scaling, cropping,
and rotation, to avoid overfitting when learning from a small dataset.

Training/inference is the core part of an end-to-end DL work-
flow. (1) Training is used to optimize a model (usually with stochas-
tic gradient descent (SGD) [5]) based on history data, which usually
consists of thousands of iterations1. Training a DL model [4, 49]
with SGD (in one iteration) comprises two steps, namely, forward
pass which is used to give predicted values for input samples, and
back-propagation pass which is used to compute gradients by prop-
agating the errors2 layer by layer in a reverse order. After that, the
model’s parameters are refined by their gradients3. (2) Inference
is used to predict the unknown data using the well-tuned model.
Inference on a DL model de facto executes a series of multilayer
forward functions. Both training and inference are computation-
intensive workloads and are popular in the cloud (with powerful
GPUs) today.

Among them, data preprocessing is a fundamental step in a DL
workflow, which needs to tackle heterogeneous data formats accord-
ing to different DL tasks. For example, as for image learning tasks,
image samples in various formats (e.g., JPEG, PNG.) are decoded
to extract the pixel matrices. As for speech learning tasks, audio
samples undergo a discrete cosine transform to obtain the spectra
data. In languages learning workflows, text samples in different
languages are quantized to obtain the vectorized features.

Considering the huge volume of data to process, data preprocess-
ing is computation-intensive and time-consuming. Reviewing the
existing DL frameworks, there are two types of serving primitives
for data preprocessing, which we categorize as offline primitive and
online primitive. The offline primitive requires great efforts to pro-
cess dataset in advance and offers services by loading the processed

1This process is also known as the learning.
2The differences between the predicted values of forward pass and the ground truth.
3Today, DL models are usually trained among distributed clusters, where the gradients
will be synchronized with each other before they are applied to the model’s parameters.

data from locally stored disks or databases (DBs). By contrast, the
online primitive offers data preprocessing services by decoding at
runtime. Data preprocessing backends such as LMDB [50] in Caffe,
TFRecord [17] in TensorFlow, and RecordIO [2] in MXNet offer of-
fline preprocessing primitives, but most DL frameworks offer online
preprocessing primitives by burning CPU cores or GPU cores.

2.2 Limitations of Existing Data Preprocessing
Backends

Unfortunately, the aforementioned data preprocessing backends
work inefficiently on existing GPU clusters, and the situation will
be more serious in the future where GPUs become faster. The
limitations of existing backends can be summarized as follows.

(1) Performance degradation: Performance degradation can
appear in both online and offline data preprocessing backends. As
shown in Figure 2, when training AlexNet by Caffe in a GPU cluster,
the LMDB-enabled Caffe downgrades GPU performance by 30%
due to the competition on the shared DB backend as more GPUs
are used, and the CPU-based Caffe achieves only 25% of the GPU
performance under the default configuration. Besides, backends
such as nvJPEG [16] which exploits GPUs to preprocess data, will
compete with model computation for GPU cores in an end-to-end
DL workflow. In our observations, the nvJPEG can dominate 40%
GPU utilization in several inference workflows, thus downgrading
the GPU performance in model computation by more than 30%.

(2) Expensive cost: Existing data preprocessing backends are
expensive in terms of both time and economics. First, offline back-
ends such as LMDB require significant time to parse data first before
training a model. For example, we spent more than 2 hours to pre-
pare the LMDB backend for ILSVRC12 [41].4 The significant time
cost hurts the benefit of users who move DL workloads to the cloud
where VMs are charged in terms of time cost. Second, online back-
ends usually offer high-performance online preprocessing services
by burning CPU/GPU cores, which bring the significant cost to
both users and cloud providers for the following reasons: (a) CPUs
and GPUs are expensively charged in the cloud or market; (b) The
significant power consumption increases the cost of maintenance.

(3) Scalability: Today, one GPU server can hold up to 8 high-
performance GPUs and two CPUs (up to 48 cores in all). However,
according to our observations, the NVIDIA Tesla V100 can pro-
cess 5,000 images per second when inferring the ResNet-50 model
whereas each Xeon E5 CPU core can decode only 300 images per
second, and the demands on CPU cores to fully boost GPUs’ per-
formance have already exceeded what such servers can offer. Such
situations can be severer in GPU clusters such as NVIDIA DGX-2
[14], where 16 Tesla V100 GPUs and 2 CPUs (48 cores in all) are
equipped, and each GPU can use at most 3 cores on average. There-
fore, it can be implied that the number of CPU cores limits the
scalability of the DL workflow when more GPUs are used.

Our motivation: Based on the aforementioned analysis, we
can conclude that offline data preprocessing backends are limited
by their performance, time cost and compatibility, whereas online
backends are limited by their scalability and economic cost. Both of

4 Recent works [3, 8, 24, 47] report that it is possible to train the AlexNet model
in minutes, but we find that they only use synthetic datasets and skips the data
preprocessing step, which is not impractical for industrial DL workflows.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Yang Cheng, et al.

CPU-based
2346/4363

LMDB
2446/3200

0

1,000

2,000

3,000

4,000

5,000

1 GPU 2 GPU
Performance Upper Boundary

Im
ag

e
pr

oc
es

sin
g

pe
rfo

rm
an

ce
 (i

m
ag

es
/s)

CPU-based LMDB
0

5

10

15

20

25

CP
U

 c
os

t (
co

re
s)

1 GPU 2 GPU

Ideal
2496/4652

（a). performance on default configuration （b). CPU cost under maximum performance
Figure 2: Statistical results of training AlexNet on NVIDIA
P100 with the Caffe engine under data parallelism. The
batch size is set to 256 images/GPU.

them are becoming bottlenecks in end-to-end DL workflows, and
such situations will deteriorate considering the rapid development
of GPUs in the future. These limitations in existing preprocessing
backends also inspire us to design DLBooster, which aims to offload
some key workloads to FPGAs, thus reducing the burden for CPU
cores and effectively accelerate the DL preprocessing.

3 DLBOOSTER DESIGN
In this section, we first describe our design principles for DLBooster.
Then, we summarize the challenges in designing such a data prepro-
cessing backend. With these constraints and challenges, we start
our roadmap to build the prototype of DLBooster, which offers
high-performance online services by selectively offloading data
preprocessing to the FPGA device.

3.1 Design Principles
There are many options for building an end-to-end AI acceleration
solution across hardware and software. We start with the following
goals and constraints for building our DLBooster.

Offeringhybrid data preprocessing service:Considering the
distinct limitations of offline backends in Section 2.2, we choose to
design DLBooster as an online data preprocessing backend to serve
more DL workflows. However, DLBooster can also cache the static
dataset for iterative learning workflows as the offline backends.
Particularly, DLBooster preprocesses all data in the first epoch and
caches them in memory as it can. After that, DLBooster loads the
processed data from the memory cache in the following epochs.

Offloading decoding logic to FPGAs:Compared to CPU-based
and GPU-based backends that offer online preprocessing services,
DLBooster exploits an FPGA device to decode online instead of
burning CPU cores or GPU cores for the following reasons: (1)
The CPU-based backend can scale poorly when consuming too
many CPU cores that are supposed to process other workloads (e.g.,
parameter aggregation of parameter server (PS)). (2) GPU-based
backends such as nvJPEGwill downgrade the performance of model
computation when competing on GPU cores in an end-to-end DL
workflow. (3) FPGAs not only can achieve high performance and
scale well in decoding workloads but also run at a lower cost.

However, instead of offloading all preprocessing workloads to
FPGA devices, we selectively offloadworkloads that can be executed
effectively by FPGAs to balance the cost and gains. For example, in

designing image preprocessing decoders, we offload the decoding
and the resizing to FPGAs and leave the data augmentation to GPU
to achieve maximum performance at the lowest cost.

Maintaining programming flexibility: Programmability is
always a concern for large-scale FPGA deployments. As a general
preprocessing backend for different DL workloads and different
engines, DLBooster considers programming flexibility during de-
sign and offers open interfaces, to benefit more AI workflows as
follows: (1) On the FPGA side, DLBooster allows programmers to
redesign their decoder on OpenCL [43], and the decoder in FPGA is
pluggable, which allows users to download relevant preprocessing
mirrors to FPGA devices for different applications (e.g., language
models, video models and speech models). (2) In the software layer,
DLBooster isolates each data preprocessing backend from the others
and offers friendly interfaces for users to allow them to implement
the adaption for different workloads with less effort. (3) DLBooster
decouples the complex data preprocessing workloads from compute
engines to flexibly adapt to different DL frameworks (e.g., Caffe,
TensorRT). With simple interfaces exposed by DLBooster, users can
easily integrate it with different DL libraries in their production.

3.2 DLBooster Architecture
The architecture of DLBooster is shown in Figure 3. DLBooster
co-designs hardware and software. In the logic view, DLBooster
can be divided into the data plane and the control plane, and the
control plane further includes three main components, namely,
FPGA decoder, host bridger and compute engine. We will introduce
them in a bottom-up order.

The data plane is located in the first layer of DLBooster. It
retrieves the raw data from both the local disk and the Internet
(NIC), considering different DL workflows. Then, the data plane
will feed the raw data into the backend for further processing by
the FPGA decoder and host bridger.

The FPGA decoder drives the FPGA device to execute data
preprocessing. It retrieves the data fed by the data plane and submits
the processed output to the host bridger in the user space. Besides,
the decoder is designed as a pluggable component and allows the
programmer to define the decoding logic for different DLworkloads.

The host bridger is the core component of the whole system;
it connects the decoder in FPGA with the compute engine in GPU.
There are three daemon threads launched in the host bridger, i.e.,
FPGA handler, GPU handler, and dispatcher. Specifically, the FPGA
handler offers abstraction and interfaces with the FPGA decoder,
whereas the GPU handler offers the abstraction and interfaces with
the GPU devices in the compute engine. The dispatcher coordinates
with two handlers, and moves the processed data from the decoder
to the compute engine using a recycled memory pool.

The compute engine is located in the top layer of DLBooster,
and it manages the training/inference logic in GPU space. Within
the compute engine, every GPU device is isolated from the others
and fetches data from its individual pipeline connected with the
dispatcher in the host bridger.

We connect all the neighboring components with high-speed
channels, so that they can be cooperated to offer the high-performance
online data preprocessing service.

DLBooster: Boosting End-to-End Deep Learning Workflows with
Offloading Data Preprocessing Pipelines ICPP 2019, August 5–8, 2019, Kyoto, Japan

Data Plane

Training
Engine

Inference
Engine6 5 4 3 2 1

123456

Full_Batch_Queue

Free_Batch_Queue

Host Bridger Compute EngineFPGA Decoder

N
V

M
e D

river
N

IC D
river

A
syncM

em
cpy

D
ispatcher

D
isk

N
IC

Blocks Queues

Packets Queues

F FF

E E E

E E E

F F F

Batch Loader

Data Flow

Control Flow

D
ecoder Instances

Trans Queues

Trans Queues

launch kerneldecode cmdread cmd

Recycle Path

B4 B3 B2 B1B5

B4 B3 B2 B1B5

P4 P3 P2 P1P5

P4 P3 P2 P1P5

Resizing

 kernel_1
 kernel_n

HugePages
memory pool

Figure 3: DLBooster architecture. There are 4 control planes used to manage multiply devices in different layers, and each
control plane coordinates with its neighbors. The data flow is: disk/NIC→ FPGA decoder→ host memory→ device memory.

3.3 FPGA Decoder Design
DLBooster designs a decoder in FPGA to address the preprocessing
job, and the running logic in the decoder can be replaced in different
DL workloads. We take image processing as an example to illustrate
the decoder design (shown in Figure 4).

At the top of the decoder, the parser receives cmds from the
host bridger through a FIFO queue, decodes these cmds to extract
metadata, and then fetches real data from disk or memory via the
DataReader. Meanwhile, it records the memory address to hold
the processed results via the memory management unit (MMU).
Following that, the fetched data are sent to the Huffman decoding
unit, which is connected to the inverse discrete cosine transform
(iDCT) unit to recover the original pixel matrix. After decoding,
the pixel matrix is passed to the resizing unit to reshape its final
outputs, and is then written to the host memory via DMA. Finally,
a FINISH signal is triggered to notify the host bridger.

Huffman
decoder

Huffman
decoder

Huffman
decoder

Huffman
decoder

Multiplex streams collector
(Round-robin)

iDCT & RGB

Channel Channel Channel Channel

Channel Channel Channel Channel

Channel

Resizer

Dispatcher

Channel

Channel

DMA

Signal

FPGA FIFO
Queue

Parser

MMU
(DDR & DMA Addr)

DMA
 from Disk

DMA
from DRAMN

V
M

e

DataReader
(Image Data)

DataReader
(Image Data)

DataReader
(Image Data)

H
os

t D
RA

M

D
D

R
4

on
 c

hi
ps

et

Resizer

FINISH Arbiter

Figure 4: FPGA-based decoder architecture, with image pro-
cessing as an example to show the details

We employ two steps to further optimize the decoder.
(1) We decouple the processing logic into three units (i.e., Huff-

man decoding unit, iDCT unit, and resizing unit) instead of merging

them into one, which allows each of them to work in pipelining
and increases the parallelism.

(2) As for each unit, we can flexibly scale running logic to differ-
ent numbers of configurable logic blocks (CLB) in FPGA, according
to its workloads and hardware constraints. In this way, the three
processing units can achieve better load balance, and none of them
will become the straggler that prolongs the overall processing time.
For example, we implement a 4-way Huffman decoding unit and a
2-way resizing unit to achieve higher performance when decoding
images.

3.4 Host Bridger Design
In order to simplify the processing logic and better coordinate the
decoder and compute engine, the host bridger offers two types of ab-
straction in DLBooster, namely, decoding abstraction and memory
managing abstraction.

3.4.1 Decoding Abstraction. The hardware devices can be heteroge-
neous, and a unified management is desirable. To provide easy pro-
grammability and mask the low-level hardware operation to com-
mon users, DLBooster sets up an abstraction, namely, FPGAReader
(run as Algorithm 1), to offer online data preprocessing services.
Generally, it pushes cmds to the FPGA decoder and synchronizes
the processed data stream to the compute engine.

In FPGAReader, FPGAChannel is set up to serve as an abstraction
interacting with the FPGA decoder. Each FPGAChannel is bound to
one FPGA decoder and works independently. Moreover, a DataCol-
lector is set up as a data abstraction, which translates the metadata
(i.e., block information) that describes the storage information of
the data on the disk or generates the metadata (i.e., physical address
of memory) that describes where the data are placed by NICs. The
DataCollector is globally shared by its callers in generating cmds
for FPGA decoders.

FPGAReader works in an asynchronous manner: it aggressively
submits cmds to the FPGA decoder through the FPGA FIFO queue
maintained by FPGAChannel and pulls the processing status with
the best effort. Such an asynchronous design enables FPGAReader
to achieve high throughput and keep low latency.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Yang Cheng, et al.

3.4.2 Memory Managing Abstraction. Since the FPGA decoder can-
not operate on the virtual memory, we need to enable a mapping
mechanism (e.g., mmap) in DLBooster, which maps memory ad-
dress between the virtual space and the physical space, to facilitate
the operation of the decoder in FPGA and the host bridger in user
space.

Algorithm 1: Asynchronous FPGAReader
Input: f ile_mani f est ,memory_pool
Output: None

1 data_collector ← BuildChannel (data_channel);
2 f pдa_channel ← FPGAInit (Queue_ID);
3 Loops_entry:
4 foreach f ile in data_collector do
5 mem_hoder ← f ree_batch_queue .peak() ;
6 if mem_hoder is NOT_AVAILABLE then
7 mem_carriers ← f pдa_channel .drain_out();

foreachmem inmem_carriers do
8 f ull_batch_queue .push(mem);
9 mem_hoder ← f ree_batch_queue .pop() ;

10 f _metainf o ← f ile .get_metainfo() ;
11 cmd ← cmd_generator(f _metainf o,

mem_hoder .phyaddr()+o f f set);
12 mem_carriers ← f pдa_channel .submit_cmd(cmd);
13 foreachmem inmem_carriers do
14 f ull_batch_queue .push(mem);

15 if running then
16 goto Loops_entry;
17 f ile_pool .recycle();
18 f pдa_channel .recycle();
19 return;

However, in today’s DL applications, data are usually prepro-
cessed in batches, and the required size of contiguous memory has
exceeded what mmap can offer. To avoid the overhead introduced
by copying small pieces, DLBooster designs its memory mapping
mechanism (shown as Algorithm 2) based on the Linux HugePage,
which takes charge of the whole control over memory management.

More concretely, DLBooster designs a memory pool to maintain
the allocated memory and offers memory accessing abstraction via
two queues, namely, Full_Batch_Queue and Free_Batch_Queue. At
the start-up, DLBooster allocates a very large amount of memory (>
1GB) in continuous space and slices it into smaller pieces. The small
memory pieces are inserted into Free_Batch_Queue for later use.
Each small memory piece contains several items, such as physical
address, virtual address andmemory size, to record its identification.

During the data preprocessing, FPGAReader fetches a memory
unit from the Free_Batch_Queue and encapsulate its physical ad-
dress (with an offset that current data are placed in the batch) into
cmds. Since it works in an asynchronous mode, FPGAReader may
aggressively encapsulate the data to process into the memory units
with best effort, and soon run out of the memory for new data. To
avoid this, Free_Batch_Queue will be blocked until a new memory

unit is available. After receiving the signal from the FPGA decoder,
FPGAReader puts the memory unit that carries a batch of data to
the Full_Batch_Queue.

On the other side of the two queues, Dispatcher fetches a mem-
ory unit from the Full_Batch_Queue, synchronizes the processed
data to compute engines, and then inserts the memory unit to the
Free_Batch_Queue for future use. Those two queues connect FP-
GAReader and Dispatcher and allow data to flow from the FPGA
decoder to the compute engine at high speed.

Algorithm 2: HugePage Memory Managing
Input: size ,counts
Output: None

1 base_addr ← get_HugePage (size ∗ counts);
2 for index = 0; index < counts; index++ do //pre-allocate
3 items .phy_addr ← base_addr + index * size ;
4 items .virt_addr ← phy2virt (items .phy_addr);
5 f ree_batch_queue .push (items);
6 MemMaдaдer .insert(f ree_batch_queue);
7 MemMaдaдer .insert(f ull_batch_queue);
8 ReturnMemMaдaдer ;

3.4.3 Dispatcher Design. Most DL frameworks allowmultiple GPU
devices to jointly work with data parallelism. Different from CPU
cores, the GPU device cannot operate on the host memory or share
its memory with other devices. To enable batched data to flow
from the host space to the GPU space, the host bridger leverages a
Dispatcher to dispatch the processed data. The running logic of the
dispatcher is shown in Algorithm 3.

During the initial stage, all compute engines will register their
communication channels (i.e., Trans Queues) to the Dispatcher. At
runtime, the Dispatcher tries to obtain a batch of processed data
from the Free_Batch_Queue and dispatches it to different GPU de-
vices with round-robin scheduling (lines 1-11 in Algorithm 3). To
reduce CPU cost, the Dispatcher asynchronously dispatches data
(lines 9 in Algorithm 3) on a specified stream. After submitting all
copying operations to GPU streams, the Dispatcher will be blocked
to synchronize these operations submitted before (lines 13-18 in
Algorithm 3), and the occupied memory units will be released and
recycled to the Free_Batch_Queue for future use. In the compute
engine, each GPU engine communicates with the global Dispatcher
using a pair of Trans Queues. The Trans Queue consists of two
queues that act as Free_Batch_Queue and Full_Batch_Queue in the
host bridger.

4 DLBOOSTER IMPLEMENTATION
We implement our prototype for image DL workloads and integrate
it with popular DL libraries to demonstrate its efficiency.

4.1 System Implementation and APIs
In hardware, we build the FPGA decoder based on OpenCL [43],
where we place 4-way Huffman and 2-way resizing units according
to their workloads and the constraints of FPGAs. We pack the

DLBooster: Boosting End-to-End Deep Learning Workflows with
Offloading Data Preprocessing Pipelines ICPP 2019, August 5–8, 2019, Kyoto, Japan

Algorithm 3: Asynchronously dispatching
Input: solvers
Output: None

1 foreach _solver in solvers do
2 while f ull_batch_queue is EMPTY do
3 f ull_batch_queue .blocking_wait();
4 f ree_trans_q ← _solver .Trans_Queues[FREE];
5 while f ree_trans_q is EMPTY do
6 f ree_trans_q.blocking_wait();
7 device_batch ← f ree_trans_q.pop();
8 batch_items ← f ull_batch_queue .pop();
9 CudaMemcpyAsync(device_batch.decive_addr ,

batch_items .virt_addr , _solver .copy_stream);
10 workinд_queue[HST].push_back(hst_batch);
11 workinд_queue[DEV].push_back(dev_batch);
12 //sync stream to recycle memory buffers;
13 foreach _solver in solvers do
14 CudaStreamSync(_solver .copy_stream);
15 dev_bth ←workinд_queue[HST].pop();
16 hst_bth ←workinд_queue[DEV].pop();
17 _solver .Trans_Queues[FULL].push(dev_bth);
18 f ree_batch_queue .push(hst_bth);
19 return;

decoder running logic as a mirror, which can be downloaded to the
FPGA devices according to different workflows.

In software, we implement FPGAReader,MemManager, and Dis-
patcher to drive the FPGA decoder to process data (Algorithm 1),
manage memory (Algorithm 2), and pipeline GPU engines (Algo-
rithm 3), respectively. Each component is connected to its neighbors
by high-speed channels. These components can be scaled freely
while offering simple interfaces to users. Table 1 summarizes the
details of the APIs and modules.

4.2 Integrating DLBooster with DL Libraries
DLBooster can be plugged into different DL libraries flexibly and co-
exist with other preprocessing backends. Programmers only spend
trivial effort in application modification and can obtain significant
performance gains with DLBooster. We demonstrate this in Section
5.2 and 5.3: With slight modifications (200 LoC for both NVCaffe
and TensorRT), both DLBooster-enabled NVCaffe and DLBooster-
enabled TensorRT deliver online preprocessing services at high
speed while maintaining low CPU cost.

5 EVALUATION
We evaluate DLBooster performance on two typical end-to-end DL
workflows, namely, local training (Section 5.2) and online inference
(Section 5.3). In the training experiment, we evaluate the DLBooster-
enabled NVCaffe performance in terms of throughput and CPU cost
via comparison with other backend-enabled NVCaffe frameworks.
In the inference experiment, we evaluate how DLBooster-enabled
NVCaffe performs in terms of throughput, latency, and CPU cost
when compared to other backend-enabled TensorRT frameworks.

We use a couple of DL models as the benchmarks in both experi-
ments. More details are described as follows.

5.1 Experiment Setup
Testbed configuration: We deploy the FPGA decoder on an Intel
Arria 10AX [10] FPGA device and set up our experiments on a
local GPU server. The server consists of 2 NVIDIA Tesla P100s,
two Intel Xeon E5-2630-v3 CPUs (32 cores in all), 64GB DRAM,
a 40Gbps NIC and an Intel Optane 900p [11] NVMe disk. In the
software, we run our programs on CentOS-7 with the latest NVIDIA
driver (v384.145), CUDA 9.0, cuDNN v7.13, NCCL v2.2.13, and other
third-party dependencies.

Compute engines:We integrate DLBoosterwithNVCaffe v0.17.0
[13] for local training experiment and integrate DLBooster with
TensorRT v4.0 [15] for online inference. We enable LMDB and
CPU-based data preprocessing backends in NVCaffe as our training
baselines, andwe enable nvJPEG and CPU-based data preprocessing
backends in TensorRT as our inference baselines.

Models and dataset. To fully evaluate howDLBooster performs,
we deploy DLBooster on several DL models in two DL workflows,
i.e., LeNet-5 [37], AlexNet [35], and ResNet-18 [26] for training, and
GoogLeNet [44], VGG-16 [42], and ResNet-50 [26] for inference,
respectively. In training experiments, the LeNet-5 is trained on
the MNIST [38], which contains 60,000 grayscale images, whereas
AlexNet and ResNet-18 are trained on the ILSVRC2012 [41], which
consists of more than 12.8 million color images. In the inference
experiments, we simulate a network transporting scenario via a
40Gbps fabric, where 5 clients send color JPEG-formatted images
(with an average size of 375×500) in real time.

5.2 Offline Training Experiment
We conduct comparative experiments to evaluate how DLBooster-
enabled NVCaffe and other two baselines (i.e., CPU-based and
LMDB-enabled NVCaffes) perform on Lenet-5, AlexNet, and Resnet-
18, respectively, and the results are presented as follows.

Throughput: The throughput of the training experiments is
shown in Figure 5. Specifically, Figure 5(a), Figure 5(b) and Figure
5(c) show the throughput when training LeNet-5, AlexNet, and
ResNet-18, respectively. From the illustrated results, we prove the
following: (1) DLBooster boosts NVCaffe approaching the perfor-
mance boundary that GPU can achieve; (2) LMDB-enabled NVCaffe
achieves high throughput during single GPU training and down-
grades its throughput by 30% when training AlexNet with 2 GPUs
(refer to Figure 5(b)). (3) CPU-based NVCaffe can achieve attractive
throughput when training all three models.

DLBooster outperforms the two other backends and boosts the
training performance of NVCaffe by 30% and 20% respectively,
and the reasons can be summarized into two main aspects. (1)
DLBooster exploits large-blockmemory to hold a batch of processed
data instead of each datum, and thus eliminates the overheads
introduced by copying small pieces. For example, when training
LeNet-5 with NVCaffe, LMDB and CPU-based backend copy each
datum to GPU in small pieces, which results in ∼20% performance
downgrades. (2) DLBooster implements the decoding service as
a singleton and actively pipelines processed data in round-robin
scheduling, thereby avoiding the imbalance amongmultiple threads.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Yang Cheng, et al.

Table 1: DLBooster API and module design

API Owner Arguments Descriptions
submit_cmd FPGAChannel packeted cmds Submit cmd to FPGA decoder and launch decoding operation
drain_out None Query the FPGA decoder processing signal asynchronously
get_item

MemManager

buffer_size Retrieve memory from memory pool with specified size
recycle_item None Return memory buffer to memory pool for the next use
phy2virt physical address Convert physical memory address to virtual memory address
virt2phy virtual address Convert virtual memory address to physical memory address
load_from_disk DataCollector None Obtain the metadata (blocks description) of files from disk
load_from_net None Fetch data from networking and store to the specified address

0

40,000

80,000

120,000

160,000

200,000

1 GPU 2 GPU Performance loss

Im
ag

e
pr

oc
es

se
d

th
ro

ug
hp

ut
 (i

m
ag

es
/s)

CPU-based LMDB DLBooster

Image preprocessing backends

(a) LeNet-5, batch size = 512 images/GPU

0

1,000

2,000

3,000

4,000

5,000

1 GPU 2 GPU Performance loss
Im

ag
e

pr
oc

es
se

d
th

ro
ug

hp
ut

 (i
m

ag
es

/s)

CPU-based LMDB DLBooster

Image preprocessing backends

(b) AlexNet, batch size = 256 images/GPU

0

600

1,200

1,800

2,400

3,000

1 GPU 2 GPU Performance loss

Im
ag

e
pr

oc
es

se
d

th
ro

ug
hp

ut
 (i

m
ag

es
/s)

CPU-based LMDB DLBooster

Image preprocessing backends

(c) ResNet-18, batch size = 128 images/GPU
Figure 5: Training throughput for LeNet-5, AlexNet and ResNet-18 on NVCaffe with different backends. We offers the CPU
resources with the best effort to achieve the maximum throughput in training with different backends.

0

5

10

15

20

25

1 GPU 2 GPUs

CP
U

 C
os

t (

co
re

s)

CPU-based LMDB DLBooster CPU-based LMDB DLBooster CPU-based LMDB DLBooster
（a) LeNet-5 on MNIST

Batch size = 512 images/GPU
(b) AlexNet on ILSVRC12

Batch size = 256 images/GPU
(c) ResNet-18 on ILSVRC12
Batch size = 128 images/GPU

0.3 core on
preprocessing

0.15 core on
transforming

0.95 core on
launching kernels

0.12 core on
updating model

(d) CPU cost in detail

Figure 6: CPU cost in training experiments. (a)-(c) compare the CPU core cost when training LeNet-5, AlexNet, and ResNet-18
under different configurations, i.e., preprocessing backends (CPU-based, LMDB, and DLBooster) and GPU numbers; (d) gives
the CPU core cost in detail when training ResNet-18 with DLBooster preprocessing backend. Training ResNet-18 with the
DLBooster backend costs no more than 1.5 CPU cores in all, where preprocessing costs only 0.3 core.

By contrast, when training AlexNet, several decoding instances will
compete for shared LMDB and interact with each other, resulting
in ∼30% performance downgrades in LMDB-enabled NVCaffe.

CPUOverhead: The CPU consumption of training experiments
is shown in Figure 6. From the illustrated results, we demonstrate
the following: (1) the DLBooster-enabled NVCaffe consumes ∼1.5
cores per GPU in training all three DL models; (2) the LMDB-based
NVCaffe consumes ∼2.5 cores per GPU when training all three DL
models; (3) the CPU-based NVCaffe burns ∼12 cores per GPU when
training AlexNet and ∼7 cores per GPU when training ResNet-18,
respectively, to deliver ideal throughput for GPU engines.

Compared to the baselines, DLBooster incurs negligible CPU
overheads. More specifically, we find that there is only 0.3 core oc-
cupied by data preprocessing workloads while training ResNet-18
(refer to Figure 6(d)). While training with LeNet-5, all the three

backends cause little CPU overheads, because the MNIST dataset is
so small that it can be cached in memory after the first epoch. How-
ever, while training with AlexNet and ResNet-18, the ILSVRC2012
dataset cannot be cached in memory and has to be loaded by CPU
from disk to memory periodically, thus demonstrating the signifi-
cant performance benefit of DLBooster.

5.3 Online Inference Experiment
We also conduct comparative experiments to show how DLBooster
and the baselines perform for online inference. Unlike offline train-
ing, data caching no longer provides performance benefits for online
inference, because each input is used only once. Therefore, backends
such as LMDB cannot boost the performance for online inference
and we do not use them as baselines in the online inference ex-
periment. Instead, we integrate DLBooster and two other online

DLBooster: Boosting End-to-End Deep Learning Workflows with
Offloading Data Preprocessing Pipelines ICPP 2019, August 5–8, 2019, Kyoto, Japan

0

1,500

3,000

4,500

6,000

1 2 4 8 16 32

Tr
ou

gh
pu

t (
im

ag
s/

s)

Batch size (images/GPU)

nvJPEG
DLBooster
CPU-based

(a) GoogLeNet

0

500

1,000

1,500

2,000

2,500

1 2 4 8 16 32

Tr
ou

gh
pu

t (
im

ag
s/

s)

Batch size (images/GPU)

nvJPEG
DLBooster
CPU-based

(b) VGG16

0

1,300

2,600

3,900

5,200

1 2 4 8 16 32 64

Tr
ou

gh
pu

t (
im

ag
s/

s)

Batch size (images/GPU)

nvJPEG

DLBooster

CPU-based

(c) ResNet-50
Figure 7: Inference throughput for GoogLeNet, VGG16 and ResNet-50 on TensorRT with DLBooster backend, nvJPEG backend
and CPU-base backend respectively. The default type is float16 to enable Tensor Core

0

10

20

30

40

50

1 2 4 8 16 32

La
te

nc
y

(m
s)

Batch size (images/GPU)

nvJPEG
DLBooster
CPU-based

(a) GoogLeNet

0

15

30

45

60

1 2 4 8 16 32

La
te

nc
y

(m
s)

Batch size (images/GPU)

nvJPEG
DLBooster
CPU-based

(b) VGG16

0

20

40

60

80

100

1 2 4 8 16 32 64

La
te

nc
y

(m
s)

Batch size (images/GPU)

nvJPEG
DLBooster
CPU-based

(c) ResNet-50
Figure 8: Inference latency for GoogLeNet, VGG16 and ResNet-50 on TensorRT with DLBooster backend, nvJPEG backend and
CPU-base backend, respectively. The default type is float16 to enable Tensor Core

0

5

10

15

20

25

CP
U

 C
os

t (

co
re

s)

CPU-based
nvJPEG
DLBooster

(a) GoogLeNet
Batch size = 32 images/GPU

(b) VGG-16
Batch size = 32 images/GPU

（c) ResNet-50
Batch size = 64 images/GPU

30

Figure 9: CPU cost in the inference experiments.

backends (i.e., CPU-based and nvJPEG) into TensorRT.5 To simulate
the online inference scenario, we set up 5 clients to send color im-
ages using a 40Gbps fabric. The average image size is 500×375, and
all images are stored in JPEG format. Then, we execute the exper-
iments with different benchmarks (i.e., GoogLeNet, VGG-16, and
ResNet-50), and compare their performance on different aspects,
including throughput, latency, and CPU cost.

Throughput: Figure 7 illustrates the throughput metric for dif-
ferent models on different backend-enabled TensorRTs, from which
we obtain the following findings: (1) DLBooster-enabled TensorRT
achieves 1.2×∼2.4× throughput, compared to the other two base-
lines. (2) nvJPEG-enabled TensorRT achieves the lowest throughput,
i.e., ∼40% performance degradation as the batch size increases, be-
cause the CUDA cores are competed between the inference engine

5TensorRT is a fast GPU-based inference engine, and nvJPEG [12] is a new image
preprocessing backend that migrates heavy workloads to GPU devices.

and nvJPEG. (3) The CPU-based TensorRT delivers high throughput
in inferring all three models by burning many CPU cores. (4) As
the batch size increases, all three backends enabled TensorRTs to
deliver higher throughput as shown in Figure 7 (a)-(c).

To understand why nvJPEG-enabled TensorRT performs poorly
as batch size increases, we investigate the GPU utilization and find
that, in order to offer sufficient throughput to inference engines, the
decoding on nvJPEG needs to consume ∼30% of GPU resources. In
addition, this experiment also exposes the drawbacks of DLBooster:
when the batch size is greater than 16 in Figure 7(a), DLBooster
approaches its performance bound due to the drawbacks of the
decoder’s design. However, the bottleneck can be overcome by
plugging more FPGA devices or further optimizing the decoder in
FPGA. As what will be shown in Section 5.4, the cheaper price of
FPGA (compared with that of CPU/GPU devices) makes it a cost-
effective strategy to improve theGPU utilization by employingmore
FPGA decoders. Besides, we believe there is still much improvement
space left with our decoder implementation. However, since this
work aims to prove the effectiveness of our offloading design to
boost end-to-end DL workflows, we leave the optimization of the
FPGA decoder to our future work.

Latency: Latency greatly affects the user experience in online
inference services. In the latency experiment, we only evaluate the
time cost introduced by the online inference system and ignore
the time cost due to other processing overheads. More concretely,
we measure the time duration from the point when the inference
system receives pictures from clients to the point when engines
make a prediction as the latency metric.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Yang Cheng, et al.

The experimental results are shown in Figure 8, from which we
make the following observations: (1) DLBooster-enabled TensorRT
achieves the lowest latency when compared with other two base-
lines, mainly because of the advantage of FPGAs in computing.
(2) When the batch size is small, TensorRTs with three different
backends achieve ultralow latency, i.e., 1.2 ms, 1.8 ms, and 3.4 ms
for DLBooster, nvJPEG, and CPU-based backends, respectively. (3)
As the batch size increases slightly, DLBooster and CPU-based
backends vary little, whereas nvJPEG significantly increases its
latency, which is mainly due to the competition for GPU cores be-
tween nvJPEG and inference engines. (4) All three TensorRTs with
different backends increase their latency in different DL models,
as the batch size significantly increases. The sharply increasing
latency in DLBooster and CPU-based enabled TensorRTs is pri-
marily introduced by the inference engines, while the overhead in
nvJPEG-enabled TensorRT results from both competition issues
and inference engines.

Besides, compared with the CPU-based data preprocessing, it
is even more impractical to employ GPU for data preprocessing,
because the cost of GPU resource is very expensive. According to
our long-term operation experience in Azure, most of the customers
cannot afford to pay such prices for just data preprocessing. Consid-
ering the statue quo of CPU-based data preprocessing, DLBooster
possesses more potential advantages for online inference in large
scale, because it saves the CPU resources compared to the baselines.

CPU Overhead: The CPU core consumption in the inference
experiment is shown in Figure 9, and the main findings can be
summarized as follows: (1) Similar to the offline training experiment,
CPU-based TensorRT burns 7∼14 CPU cores per GPU in different
models to deliver the online preprocessing services that the GPU
wants. (2) Both nvJPEG-enabled and DLBooster-enabled TensorRTs
result in little overhead for CPU core consumption (i.e., 1.5 cores
per GPU in nvJPEG and 0.5 core per GPU in DLBooster), as both
backends migrate preprocessing workloads to other devices (i.e.,
FPGA in DLBooster and GPU in nvJPEG). However, in the nvJPEG
backend, few (1∼2) CPU cores are used to launch CUDA kernels.
Moreover, the nvJPEG-enabled frameworks burn GPU cores and
downgrade the performance of the model computing part.

5.4 Economic Analysis
From the economic perspective, we can also prove that DLBooster
possesses great benefits for online data preprocessing services:

(1) To common users: DLBooster provides the following eco-
nomic gains to common users. First, it offers online data preprocess-
ing services and avoids the time-consuming data conversion in of-
fline backends. Second, DLBooster offers high-performance services
by offloading workloads to FPGAs instead of burning CPU/GPU
cores. Both advantages can save more money for users to migrate
DL workloads to the cloud.

(2) To cloud providers: Today, Azure and other cloud providers
sell cloud services such as VMs, including GPU instances, to the
public. According to Azure [19], a physical core (2 hyperthreads)
on the cloud sells for $0.10∼0.11 per hour, or potential revenue of
∼$900 per year. In modern DL workflows, a well-optimized FPGA
decoder [9] can offer the same online data preprocessing services
as 30 cores. By enabling DLBooster, those 30 cores can be replaced

by one FPGA, and the saved CPU cores can still be sold to other
tenants for more than $1.5/h. Moreover, FPGAs have the lowest
power consumption (∼25W [20]) compared with CPU (∼ 130W)
and GPU (∼ 250W), and thus reduce the cost of cloud maintenance.

Summary:Based on the experiments and analysis in Section 5.2∼
Section 5.4, we demonstrated that DLBooster can achieve great per-
formance gains (including throughput, latency, CPU overhead, etc.)
compared to existing data preprocessing backends. Meanwhile, it
is also a cost-effective solution that brings much economic benefit
to both cloud service customers and providers.

6 RELATEDWORK
In recent years, DL acceleration has been extensively studied due to
the increasing data volume and growing model complexity. How-
ever, most of them focus on the optimization of computing and
communication, but rarely consider the impact of data prepro-
cessing on end-to-end DL workflows. Existing works on the data
preprocessing of DL systems can be organized as follows:

Offline and online data preprocessing: The mainstream DL
libraries usually have their data preprocessing backends. In gen-
eral, these backends can be divided into two categories based on
their service primitives. The first category is composed of offline
primitives, such as RecordIO [2] in MXNet, LMDB [50] in Caffe,
and TFRecord [17] in TensorFlow. This offline service usually re-
quires significant efforts to convert the original data to the data
with an identifiable format before "learning". The second category
is composed of online primitives, which achieve high-performance
services by burning many CPU cores and therefore are not scalable.
DALI [12], proposed by NVIDIA, is a hybrid data preprocessing
backend that exploits CPU cores and GPU-based nvJPEG [16] to
process decoding workloads. However, when there are no enough
CUDA cores to use, the GPU-based nvJPEG may downgrade the
overall performance of the end-to-end DL workflow by competing
for GPU resources.

Pipelining input with fast IO: As more powerful and larger-
scale GPU clusters are available today, DL workflow has been dra-
matically speeded up [24, 27, 30, 47], putting a heavier demand
on the input. Pioneering studies [24, 30] have noted the mismatch
between the straggling input modules and faster GPU engines, and
they try tomitigate this by leveraging faster IO and better pipelining.
For example, [24] places 8 NVMe SSDs into each server to achieve
fast IO in their experiments. [30] pipelines the input module of
TensorFlow to minimize both CPU and GPU idle time. However,
naively pipelining data input on fast IO can hardly alleviate the
massive gap between supply and demand for data preprocessing in
the DL system. Unlike the existing solutions, DLBooster offloads
the preprocessing logic to FPGA hardware and elaborately designs
the processing logic, and it thus can eliminate the bottleneck and
achieve much higher performance for various DL workflows.

7 CONCLUSIONS AND FUTUREWORK
Data preprocessing, which is mostly ignored by existing DL ac-
celeration solutions, is becoming the bottleneck in end-to-end DL
workflows. In order to accelerate the DLworkflow and avoid the pre-
processing bottleneck, we propose DLBooster, to boost the overall

DLBooster: Boosting End-to-End Deep Learning Workflows with
Offloading Data Preprocessing Pipelines ICPP 2019, August 5–8, 2019, Kyoto, Japan

performance and release the heavy burdens on CPUs. Our experi-
ments on both offline training and online inference demonstrate
that, DLBooster can achieve 1.3×∼2.4× overall performance and
reduce latency by 1/3 in typical DL benchmarks when compared
with other data preprocessing backends. As for the future improve-
ment with DLBooster, there are several directions in consideration,
including (1) tuning the decoder in FPGA to achieve higher utiliza-
tion and throughput, (2) directly writing the processed data to GPU
devices for lower latency, (3) extending more preprocessing kernels
for more DL applications.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and Devel-
opment Program of China under Grant 2018YFB1800800, 2018YFB-
1800600, the Research and Development Program in Key Areas of
Guangdong Province (Grant No.2018B010113001), and the National
Natural Science Foundation of China under Grant No. 61432002,
No. 61772305, No.61672499. Dan Li is the corresponding author of
this paper.

REFERENCES
[1] Martín Abadi et al. 2016. Tensorflow: A system for large-scale machine learning.

In 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). 265–283.

[2] Anirudh Acharya et al. 2018. Image Transforms and RecordIO file Cre-
ation of MXNet. https://cwiki.apache.org/confluence/display/MXNET/Image+
Transforms+and+RecordIO+file+Creation.

[3] Takuya Akiba et al. 2017. Extremely large minibatch sgd: Training resnet-50 on
imagenet in 15 minutes. arXiv preprint arXiv:1711.04325 (2017).

[4] Léon Bottou et al. 2010. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010. Springer, 177–186.

[5] Jianmin Chen et al. 2016. Revisiting distributed synchronous SGD. arXiv preprint
arXiv:1604.00981 (2016).

[6] Tianqi Chen et al. 2015. Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems. arXiv:1512.01274 (2015).

[7] Yang Cheng et al. 2019. Bridging machine learning and computer network
research: a survey. CCF Transactions on Networking 1, 1 (May 2019), 1–15.

[8] Minsik Cho et al. 2017. PowerAI DDL. arXiv preprint arXiv:1708.02188 (2017).
[9] Intel Corporation. 2018. A brief JPEG decoder example design on Intel Stritax V

A7 FPGA. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
support/examples/download/exm_opencl_jpegdecoder.pdf.

[10] Intel Corporation. 2018. Intel Arria-10 FPGAs. https://www.intel.com/content/
www/us/en/products/programmable/fpga/arria-10.html.

[11] Intel Corporation. 2019. A brief Introduction to the Intel Optane SSD
900p Series. https://www.intel.com/content/www/us/en/products/memory-
storage/solid-state-drives/gaming-enthusiast-ssds/optane-900p-series.html.

[12] NVIDIA Corporation. 2018. Announcing NVIDIA DALI and NVIDIA
nvJPEG. https://news.developer.nvidia.com/announcing-nvidia-dali-and-nvidia-
nvjpeg/.

[13] NVIDIA Corporation. 2018. NVCaffe, an NVIDIA-maintained fork of Berkeley
Vision and Learning Center (BVLC) Caffe tuned for NVIDIA GPUs. https://www.
nvidia.com/en-us/data-center/gpu-accelerated-applications/caffe/.

[14] NVIDIA Corporation. 2018. NVIDIA DGX-2: the world’s most powerful AI
system for the most complex AI challenges. https://www.nvidia.com/en-us/data-
center/dgx-2/.

[15] NVIDIA Corporation. 2018. NVIDIA TensorRT Programmable Inference Acceler-
ator. https://developer.nvidia.com/tensorrt.

[16] NVIDIA Corporation. 2018. nvJPEG GPU-accelerated JPEG decoder. https:
//developer.nvidia.com/nvjpeg.

[17] Mark Daoust et al. 2018. Using TFRecords and tf.Example in TensorFlow. https:
//www.tensorflow.org/tutorials/load_data/tf-records.

[18] Ltsc Deng et al. 2013. Recent advances in deep learning for speech research at
Microsoft.. In ICASSP, Vol. 26. 64.

[19] Daniel Firestone et al. 2018. Azure Accelerated Networking: SmartNICs in the
Public Cloud. In Proceedings of NSDI’18, Renton, WA.

[20] Robin Flowerdew et al. 1991. Using areal interpolation methods in geographic
information systems. Papers in regional science 70, 3 (1991), 303–315.

[21] Jort F. Gemmeke et al. 2017. Audio Set: An ontology and human-labeled dataset
for audio events. In Proc. IEEE ICASSP 2017. New Orleans, LA.

[22] Jinkun Geng et al. 2018. HiPS: Hierarchical Parameter Synchronization in Large-
Scale Distributed Machine Learning. In Proceedings of NetAI’18.

[23] Jinkun Geng et al. 2019. Rima:An RDMA-Accelerated Model-Parallelized Solution
to Large-Scale Matrix Factorization. In ICDE’19.

[24] Priya Goyal et al. 2017. Accurate, large minibatch SGD: training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017).

[25] Chuanxiong Guo et al. 2016. RDMA over Commodity Ethernet at Scale. In
Proceedings of ACM SIGCOMM ’16.

[26] Kaiming He et al. 2015. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision. 1026–1034.

[27] Kaiming He et al. 2016. Deep residual learning for image recognition. In IEEE
CVPR’18. 770–778.

[28] Yukai Huang et al. 2017. LOS: A High Performance and Compatible User-level
Network Operating System. In APNet’17.

[29] M. Jaderberg et al. 2014. Reading Text in the Wild with Convolutional Neural
Networks. arXiv preprint arXiv:1412.1842 (2014).

[30] Xianyan Jia et al. 2018. Highly Scalable Deep Learning Training System
with Mixed-Precision: Training ImageNet in Four Minutes. arXiv preprint
arXiv:1807.11205 (2018).

[31] Yangqing Jia et al. 2014. Caffe: Convolutional architecture for fast feature em-
bedding. In the 22nd ACM Multimedia. ACM, 675–678.

[32] Geng Jinkun et al. 2019. ElasticPipe: An Efficient and Dynamic Model-Parallel
Solution to DNN Training. In ScienceCloud ’19.

[33] Geng Jinkun et al. 2019. Horizontal or Vertical? AHybrid Approach to Large-Scale
Distributed Machine Learning. In CCIW ’19.

[34] Nikhil Ketkar. 2017. Introduction to pytorch. In Deep Learning with Python.
Springer, 195–208.

[35] Alex Krizhevsky et al. 2012. Imagenet classification with deep convolutional
neural networks. In NIPS 2012. 1097–1105.

[36] Quoc V Le. 2013. Building high-level features using large scale unsupervised
learning. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on. IEEE, 8595–8598.

[37] Yann LeCun et al. 1995. Comparison of learning algorithms for handwritten
digit recognition. In International conference on artificial neural networks, Vol. 60.
Perth, Australia, 53–60.

[38] Yann LeCun et al. 1998. THEMNIST DATABASE of handwritten digits. Retrieved
2012 from http://yann.lecun.com/exdb/mnist/

[39] Yann LeCun et al. 2015. Deep learning. nature 521, 7553 (2015), 436.
[40] Y. Li et al. 2018. ANetwork-Centric Hardware/AlgorithmCo-Design to Accelerate

Distributed Training of Deep Neural Networks. In MICRO’18.
[41] Olga Russakovsky et al. 2015. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252.
[42] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[43] John E Stone et al. 2010. OpenCL: A parallel programming standard for hetero-

geneous computing systems. Computing in science & engineering 12, 3 (2010),
66–73.

[44] Christian Szegedy et al. 2015. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1–9.

[45] Trinh Xuan Tuan et al. 2017. 3D Convolutional Networks for Session-based
Recommendation with Content Features. In Proceedings of RecSys ’17.

[46] Shuai Wang et al. 2019. Impact of Network Topology on the Performance of
DML: Theoretical Analysis and Practical Factors. In IEEE INFOCOM 2019.

[47] Yang You et al. 2017. ImageNet training in minutes. CoRR, abs/1709.05011 (2017).
[48] Yibo Zhu et al. 2015. Congestion Control for Large-Scale RDMA Deployments.

In Proceedings of ACM SIGCOMM ’15.
[49] Martin Zinkevich et al. 2010. Parallelized stochastic gradient descent. In Advances

in neural information processing systems. 2595–2603.
[50] Feng Zou. 2017. How to create ImageNet LMDB in Caffe. https://github.com/

intel/caffe/wiki/How-to-create-Imagenet-LMDB.

https://cwiki.apache.org/confluence/display/MXNET/Image+Transforms+and+RecordIO+file+Creation
https://cwiki.apache.org/confluence/display/MXNET/Image+Transforms+and+RecordIO+file+Creation
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/support/examples/download/exm_opencl_jpegdecoder.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/support/examples/download/exm_opencl_jpegdecoder.pdf
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://news.developer.nvidia.com/announcing-nvidia-dali-and-nvidia-nvjpeg/
https://news.developer.nvidia.com/announcing-nvidia-dali-and-nvidia-nvjpeg/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/caffe/
https://www.nvidia.com/en-us/data-center/gpu-accelerated-applications/caffe/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/nvjpeg
https://developer.nvidia.com/nvjpeg
https://www.tensorflow.org/tutorials/load_data/tf-records
https://www.tensorflow.org/tutorials/load_data/tf-records
http://yann.lecun.com/exdb/mnist/
https://github.com/intel/caffe/wiki/How-to-create-Imagenet-LMDB
https://github.com/intel/caffe/wiki/How-to-create-Imagenet-LMDB

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DL Workflow
	2.2 Limitations of Existing Data Preprocessing Backends

	3 DLBooster Design
	3.1 Design Principles
	3.2 DLBooster Architecture
	3.3 FPGA Decoder Design
	3.4 Host Bridger Design

	4 DLBooster Implementation
	4.1 System Implementation and APIs
	4.2 Integrating DLBooster with DL Libraries

	5 Evaluation
	5.1 Experiment Setup
	5.2 Offline Training Experiment
	5.3 Online Inference Experiment
	5.4 Economic Analysis

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

